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Density estimation in the presence of noisy,
heterogeneous, and incomplete data

I Astronomical data sets: Low S/N, incomplete data . . . on a
per observation basis

I Find underlying distribution, not observed distribution
I Extreme deconvolution: Each sample is drawn from a

different distribution
I But CS only gives us methods for noiseless data!! (or

noise = constant)



Velocity distribution from Hipparcos data

I Hipparcos: positions,
proper motions and
parallaxes for nearby
stars

I Infer velocity distribution
→ streams

I Low S/N (σπ/π ∼ 10%),
incomplete data (no
radial velocities).

O. Eggen 1965, W. Dehnen 1998



Modeling the distribution function

I Distribution = Sum over K Gaussians
I Fit for amplitudes, means, and covariances
I Observations: Noisy projections of true values

I wi = Rivi + noise
I Gaussian noise

I incomplete data ≡ noisy data → ���
I

Ri



Objective function for optimization

I Likelihood of the model =
∏

i probability of the data point
given the model

I P(data point | model) = (
∑

Gaussians) ∗ (noise)

I . . . optimize
I And we’re done!
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Not so fast! Complications

I Optimization is hard
I Generic optimizer: constraints on

amplitudes, covariances
I Expectation-Maximization: Deals

naturally with incomplete data, but
slow

I Prior information: use conjugate
priors to

I Regularize covariances
I Regularize amplitudes
I Works well with EM

I Local maxima: use
“split-and-merge” extension
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Model selection: Set # of Gaussians K
(+hyperparameters)

I Cross-validation: slow, impractical
I Minimum coding inference: best

model has shortest message length
I Probability of an external data set:

e.g., radial velocities
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Preliminary Results



Summary
I New technique for deconvolving an observed distribution

function consisting of
1. justified, scalar objective function
2. Stable optimizer
3. Model selection recipe

I Establish the statistial significance of the “moving groups”
in the velocity distribution

I Joint work with: David Hogg (NYU), Sam Roweis (Toronto)
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